triangle acutangle - definition. What is triangle acutangle
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

SPHERICAL TRIANGLE USED IN ASTRONAVIGATION
Pzx triangle; PZX triangle; Navigation triangle; Navigation triangle (spherical geometry); Navigational triangle (spherical geometry); PZR triangle; RPM triangle; GPR triangle

equilateral         
  • An equilateral triangle. It has equal sides (<math>a = b = c</math>), equal angles (<math>\alpha = \beta =\gamma</math>), and equal altitudes (<math>h_a = h_b = h_c</math>).
  • Construction of equilateral triangle with compass and straightedge
  • 3}}/2}}.
  • The equilateral triangle tiling fills the plane.
  • A regular tetrahedron is made of four equilateral triangles.
GEOMETRIC SHAPE WITH THREE SIDES OF EQUAL LENGTH
Equilateral triangles; Equalangular triangle; Equiangular triangle; Equilateral Triangles; Equilateral Triangle; Regular Triangle; Regular triangle; Equalateral triangle; Equilateral; Isopleuron
[?i:kw?'lat(?)r(?)l, ??kw?-]
¦ adjective having all its sides of the same length.
Origin
C16: from Fr. equilateral or late L. aequilateralis, from aequilaterus 'equal-sided' (based on L. latus, later- 'side').
Subclavian triangle         
SMALLER DIVISION OF THE POSTERIOR TRIANGLE
Omoclavicular triangle; Supraclavicular triangle
The subclavian triangle (or supraclavicular triangle, omoclavicular triangle, Ho's triangle), the smaller division of the posterior triangle, is bounded, above, by the inferior belly of the omohyoideus; below, by the clavicle; its base is formed by the posterior border of the sternocleidomastoideus.
Pascal's triangle         
  • Visualisation of binomial expansion up to the 4th power
  • a4 white rook
  • b4 one
  • c4 one
  • b3 two
  • c3 three
  • d3 four
  • c2 six
  • [[Fibonacci sequence]] in Pascal's triangle
  • Each frame represents a row in Pascal's triangle. Each column of pixels is a number in binary with the least significant bit at the bottom. Light pixels represent ones and the dark pixels are zeroes.
  • In Pascal's triangle, each number is the sum of the two numbers directly above it.
  • A level-4 approximation to a Sierpinski triangle obtained by shading the first 32 rows of a Pascal triangle white if the binomial coefficient is even and black if it is odd.
  • Pascal]]'s version of the triangle
  • rod numerals]], appears in [[Jade Mirror of the Four Unknowns]], a mathematical work by [[Zhu Shijie]], dated 1303.
TRIANGULAR ARRAY OF THE BINOMIAL COEFFICIENTS IN MATHEMATICS
Pascals triangle; Pascals Triangle; Pascal's Triangle; Yang Hui's triangle; Pascal triangle; Khayyam-Pascal's triangle; Binomial triangle; Yanghui Triangle; Yanghui's triangle; Pascals tringle; Pascals triagle; Khayyam-Pascal triangle; Yang Hui's Triangle; Tartaglia's triangle; Khayyam triangle; Khayyám triangle; Yanghui triangle; Chinese's triangle; Triangle of Pascal; Triangle's Pascal; Pascal’s triangle; D-triangle number; Meru Prastara
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in India,Maurice Winternitz, History of Indian Literature, Vol.

ويكيبيديا

Navigational triangle

The navigational triangle or PZX triangle is a spherical triangle used in astronavigation to determine the observer's position on the globe. It is composed of three reference points on the celestial sphere:

  • P is the Celestial Pole (either North or South). It is a fixed point.
  • Z is the observer's zenith, or their position on the celestial sphere.
  • X is the position of a celestial body, such as the sun, moon, a planet, or a star.

The position of Z or X is described via its declination—the angular distance north or south of the equator (corresponding to its latitude)—and the hour angle—the angle between its meridian and the Greenwich meridian (corresponding to its longitude). If the observer knows the angles subtended by P, Z, and X, they can calculate their position on the globe. By measuring the angle of the celestial body in the sky, the observer can get the local hour angle (LHA) of X, which is the angle subtended at P between Z and X (the angle between the Z and X's meridians) and calculate the longitude by subtracting from the Greenwich hour angle of the celestial body. Finding the latitude requires measuring the vertical angle (altitude) of X from the horizon using a sextant, the declination of X from a reference book, and a set of sight reduction Tables.

The sun, moon, and planets move relative to the celestial sphere, but the only the stars' hour angles change with the rotation of the earth, completing a full 360 degrees every solar day.